Code No.: 12426 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.C.E.) II-Semester Main & Backlog Examinations, August-2023 **Problem Solving through Object-Oriented Programming**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

O N-			Part-A (10 \times 2 =			2			
Q. No.		Stem of the question			M	L	СО	PO	PEC
1.	Differenti	ate	between "structure" in C and "class"	' in C++.	2	1	1	1	1
2.	Match the	fo	llowing:		2	1	1	1	1
	a	1)	Bitwise operator	1) !=					1
	b)	Scope resolution operator	2) ->				,	
	c)	Structure Member access Operator	3) ::					
	d)	Relational Operator	4) &					
3.	Predict the C++ progra	ou am	atput of the following code-segment:	when embedded in	2	2	2	1, 2	1
	int doCha	nge	e(int &,int=15);						
	int doCha	nge	e(int &a,int b)						
	a++; b++;								
		rn	(a+b);						
	void main(v	oio	4)						
	{ int x=1	0,	y=20, z=0;		1				
	z=doCha cout<<"	nge x='	?(x); '< <x<<"y="<<y<<"z="<<z;< td=""><td></td><td></td><td></td><td></td><td></td><td></td></x<<"y="<<y<<"z="<<z;<>						
	}								
4.	Write a C++ of 'n' items	fu an	nction "getSmall" that must accept a d returns the smallest value.	n integer Array 'A'	2	3	2	2, 3	1
5.	Construct a erm.	C+	+ recursive function that must return	the N th Fibonacci	2	3	3	2, 3	1
6.	mplement >	>> (operator overloaded function definition the system class with "real" and "ir	on to read input for	2	2	3	1, 2	1

Code No.: 12426 N/O

7.	Write a generic function template that returns the smallest of the given three generic items.	2	3	4	2, 3	1
8.	Define Abstract Base Class. When do you use this?	2	1	4	2, 3	1
9.	Differentiate Stack and Queue in terms of operations and uses in Computing.	2	1	5	2, 3	1
10.	For a singly linked list with integer data, implement a function that has to accept the root node, an integer 'N' and 'K' to insert 'N' in 'K ^{th'} place starting from the head node. [Assume that the number of elements in the list $> K$].	2	3	5	2, 3	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$					
11. a)	Mention different looping statements that are supported in C++ with their syntax & examples.	4	1	1	1, 2	1
b)	Write a C++ program to read the radius of the Sphere and display the Surface area and Volume. Use 2-digits precision.	4	2	1	2, 3	1
12. a)	Differentiate Call-by-Value and Call-by-Reference with relevant examples in C++.	4	2	2	1, 2	1
b)	Construct a C++ class by name "Rain" that must maintain the readings of rainfall in Hyderabad for 10-days in an Array as member. Later, using an appropriate member-functions:	4	3	2	2, 3	1
-	a) Print the average rainfall in the main application.b) Print on which day the maximum rainfall occurred? Use Linear Search [assume that all the readings are distinct]					
13. a)	Define Constructors and Destructors. Write "Vector" ADT class, representing a vector $(\bar{v} = a\bar{\iota} + b\bar{\jmath} + c\bar{k})$, where a, b, c are integer members of the class. Implement all overloaded forms of the constructors and destructors.	4	2	3	1, 2	1
b)	Construct "Complex" C++ class, representing a complex number system to:	4	3	3	2, 3	1
	 a) Overload + operator for adding two Complex numbers, implemented as a member function. b) Overload ++ operator to increment the real and imaginary parts by 1, implemented as a friend function. 					
14. a)	What is the advantage of Inheritance? Write the syntax of creating a derived class 'D' from a base class 'B'. Explain which characteristics can be inherited and which characteristics cannot be inherited?	4	1	4	1, 2	1
b)	How do you achieve Runtime Dynamic Polymorphism in public inheritance? Illustrate with an example.	4	3	4	2, 3	1

Code No.: 12426 N/O

15. a)	Implement a 10-integer Stack Class with stack associated operations as member functions.	4	2	5	1, 2	1
b)	Write a singly linked list 'Node' structure with integer 'x'. Construct a C++ menu-driven application to maintain the Singly Linked List with the following options:	4	3	5	2, 3	1
	 a) Creating a Head Node b) Adding a Node at End c) Displaying the List d) Terminating the application. 					
16. a)	Write a C++ program to print all Palindrome numbers up to 'N'.	4	2	1	1, 2	1
b)	How do you declare a Matrix in a program. Develop a C++ application to read a Matrix 'A' of order m x n and later display it and its Transpose in the form of Matrices.	4	3	2	2, 3	1
17.	Answer any <i>two</i> of the following:	772				
a)	What is the significance of Array of Pointers? Illustrate with any two appropriate examples.	4	3	3	2, 3	1
b)	What is Hybrid Inheritance? Mention the problem associated with it. Propose the solution.	4	2	4	1, 2	1
c)	Define exception. Demonstrate how do you handle the exceptions in C++ with an example.	4	2	5	1, 2	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
